Propagation of Ultralow‐Frequency Waves from the Ion Foreshock into the Magnetosphere During the Passage of a Magnetic Cloud

Kazue Takahashi, Lucile Turc, Emilia Kilpua, Naoko Takahashi, Andrew P. Dimmock, Primoz Kajdic, Minna Palmroth, Yann Pfau-Kempf, Jan Souček, Tetsuo Motoba, Michael D. Hartinger, Anton Artemyev, Howard Singer, Urs Ganse, Markus Battarbee

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

We have examined the properties of ultralow-frequency (ULF) waves in space (the ion foreshock, magnetosheath, and magnetosphere) and at dayside magnetometer stations (L = 1.6-6.5) during Earth's encounter with a magnetic cloud in the solar wind, which is characterized by magnetic fields with large magnitudes (similar to 14 nT) and small cone angles (similar to 30 degrees). In the foreshock, waves were excited at similar to 90 m Hz as expected from theory, but there were oscillations at other frequencies as well. Oscillations near 90 mHz were detected at the other locations in space, but they were not in general the most dominant oscillations. On the ground, pulsations in the approximate Pc2-Pc4 band (5 mHz-120 mHz) were continuously detected at all stations, with no outstanding spectral peaks near 90 mHz in the H component except at stations where the frequency of the third harmonic of standing Alfven waves had this frequency. The fundamental toroidal wave frequency was below 90 mHz at all stations. In the D component spectra, a minor spectral peak is found near 90 mHz at stations located at L <3, and the power dropped abruptly above this frequency. Magnetospheric compressional wave power was much weaker on the nightside. A hybrid-Vlasov simulation indicates that foreshock ULF waves have short spatial scale lengths and waves transmitted into the magnetosphere are strongly attenuated away from noon.

Originalspråkengelska
Artikelnummere2020JA028474
TidskriftJournal of geophysical research. Space physics
Volym126
Utgåva2
Antal sidor28
ISSN2169-9380
DOI
StatusPublicerad - feb 2021
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 114 Fysik
  • 1171 Geovetenskaper

Citera det här