Sammanfattning
We present ReLCo— the Revita Learner Corpus—a new semi-automatically annotated learner corpus for Russian. The corpus was collected while several hundreds L2 learners were performing exercises using the Revita language-learning system. All errors were detected automatically by the system and annotated by type. Part of the corpus was annotated manually—this part was created for further experiments on automatic assessment of grammatical correctness. The Learner Corpus provides valuable data for studying patterns of grammatical errors, experimenting with grammatical error detection and grammatical error correction, and developing new exercises for language learners. Automating the collection and annotation makes the process of building the learner corpus much cheaper and faster, in contrast to the traditional approach of building learner corpora. We make the data publicly available.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the 13th International Conference on Language Resources and Evaluation (LREC 2022) |
Redaktörer | Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, et al. |
Antal sidor | 8 |
Utgivningsort | Paris |
Förlag | European Language Resources Association (ELRA) |
Utgivningsdatum | 2022 |
Sidor | 832-839 |
ISBN (elektroniskt) | 979-10-95546-72-6 |
Status | Publicerad - 2022 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Language Resources and Evaluation Conference - Marseille, Frankrike Varaktighet: 20 juni 2022 → 25 juni 2022 Konferensnummer: 13 https://lrec2022.lrec-conf.org/en/ |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
-
LLL: Language Learning Lab
Yangarber, R. (Projektledare), Katinskaia, A. (Deltagare), Hou, J. (Deltagare), Furlan, G. (Deltagare) & Kylliäinen, I. P. (Deltagare)
Projekt: Forskningsprojekt
-
Revita: Language learning and AI
Yangarber, R. (Projektledare), Katinskaia, A. (Deltagare), Hou, J. (Deltagare), Furlan, G. (Deltagare) & Kylliäinen, I. P. (Deltagare)
Projekt: Forskningsprojekt