SLIPMAP: Fast and Robust Manifold Visualisation for Explainable AI

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

We propose a new supervised manifold visualisation method, slipmap, that finds local explanations for complex black-box supervised learning methods and creates a two-dimensional embedding of the data items such that data items with similar local explanations are embedded nearby. This work extends and improves our earlier algorithm and addresses its shortcomings: poor scalability, inability to make predictions, and a tendency to find patterns in noise. We present our visualisation problem and provide an efficient GPU-optimised library to solve it. We experimentally verify that slipmap is fast and robust to noise, provides explanations that are on the level or better than the other local explanation methods, and are usable in practice.
Originalspråkengelska
Titel på värdpublikationAdvances in Intelligent Data Analysis XXII
Antal sidor13
FörlagSpringer
Utgivningsdatum16 apr. 2024
Sidor223–235
ISBN (tryckt)978-3-031-58553-1
ISBN (elektroniskt)978-3-031-58555-5
DOI
StatusPublicerad - 16 apr. 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangSymposium on Intelligent Data Analysis - Sweden, Stockholm, Sverige
Varaktighet: 24 apr. 202426 apr. 2024
Konferensnummer: 22
https://ida2024.org

Publikationsserier

NamnLecture Notes in Computer Science
FörlagSpringer
Volym14642
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Bibliografisk information

Recipient of the best paper award.

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här