Projekt per år
Sammanfattning
We complete our theory of weighted
L-p (w(1)) x L-q (w(2)) -> L-r (w(1)(r/p) w(2)(r/q))
estimates for bilinear bi-parameter Calderon-Zygmund operators under the assumption that w(1) is an element of A(p) and w(2 )is an element of A(q) are bi-parameter weights. This is done by lifting a previous restriction on the class of singular integrals by extending a classical result of Muckenhoupt and Wheeden regarding weighted BMO spaces to the product BMO setting. We use this extension of the Muckenhoupt-Wheeden result also to generalise some two-weight commutator estimates from biparameter to multi-parameter. This gives a fully satisfactory Bloom-type upper estimate for [T-1, [T-2, ...[b,T-k]]], where each T-i can be a completely general multi-parameter Calderon-Zygmund operator.
L-p (w(1)) x L-q (w(2)) -> L-r (w(1)(r/p) w(2)(r/q))
estimates for bilinear bi-parameter Calderon-Zygmund operators under the assumption that w(1) is an element of A(p) and w(2 )is an element of A(q) are bi-parameter weights. This is done by lifting a previous restriction on the class of singular integrals by extending a classical result of Muckenhoupt and Wheeden regarding weighted BMO spaces to the product BMO setting. We use this extension of the Muckenhoupt-Wheeden result also to generalise some two-weight commutator estimates from biparameter to multi-parameter. This gives a fully satisfactory Bloom-type upper estimate for [T-1, [T-2, ...[b,T-k]]], where each T-i can be a completely general multi-parameter Calderon-Zygmund operator.
Originalspråk | engelska |
---|---|
Tidskrift | Indiana University Mathematics Journal |
Volym | 71 |
Nummer | 1 |
Sidor (från-till) | 37-63 |
Antal sidor | 27 |
ISSN | 0022-2518 |
DOI | |
Status | Publicerad - 2022 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |
Vetenskapsgrenar
- 111 Matematik
Projekt
- 2 Slutfört
-
Singular integrals and the geometry of measures
Martikainen, H. & Oikari, T.
Valtion perusrahoitus/hankkeet
01/01/2018 → 31/12/2020
Projekt: Helsingfors Universitetets treåriga forskningsprojekt
-
Geometric and dyadic harmonic analysis: general measures and rectifiability
Martikainen, H. & Airta, E.
01/09/2016 → 31/08/2021
Projekt: Forskningsprojekt