Testing the Generalization Power of Neural Network Models Across NLI Benchmarks

Aarne Johannes Talman, Stergios Chatzikyriakidis

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Neural network models have been very successful in natural language inference, with the best models reaching 90% accuracy in some benchmarks. However, the success of these models turns out to be largely benchmark specific. We show that models trained on a natural language inference dataset drawn from one benchmark fail to perform well in others, even if the notion of inference assumed in these benchmarks is the same or similar. We train six high performing neural network models on different datasets and show that each one of these has problems of generalizing when we replace the original test set with a test set taken from another corpus designed for the same task. In light of these results, we argue that most of the current neural network models are not able to generalize well in the task of natural language inference. We find that using large pre-trained language models helps with transfer learning when the datasets are similar enough. Our results also highlight that the current NLI datasets do not cover the different nuances of inference extensively enough.
Originalspråkengelska
Titel på värdpublikationThe Workshop BlackboxNLP on Analyzing and Interpreting Neural Networks for NLP at ACL 2019 : Proceedings of the Second Workshop
RedaktörerTal Linzen, Grzegorz Chrupała, Yonatan Belinkov, Dieuwke Hupkes
Antal sidor10
UtgivningsortStroudsburg
FörlagThe Association for Computational Linguistics
Utgivningsdatum1 aug. 2019
Sidor85-94
ISBN (elektroniskt)978-1-950737-30-7
StatusPublicerad - 1 aug. 2019
MoE-publikationstypA4 Artikel i en konferenspublikation
Evenemang2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP - Florence, Italien
Varaktighet: 1 aug. 20191 aug. 2019
Konferensnummer: 2

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap
  • 6121 Språkvetenskaper

Citera det här