The interactions between zeolite and two cellulose derivatives: a comprehensive analysis of liquid and solid phase properties

Jakub Matusiak, Elżbieta Grządka, Urszula Maciołek, TRUNG-ANH LE, Tan Phat Huynh, Wojciech Franus

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

This study investigates the impact of cellulose-derived polymers, anionic carboxymethylcellulose (CMC), and cationic cellulose (CC) on the colloidal and thermal stability of zeolite Na-X materials. By exploring polymer adsorption onto Na-X surfaces and characterising the resultant materials, using FT-IR, XPS, SEM, PSD, CHN, and zeta potential, the research unveils how CMC and CC modify zeolite properties. This investigation elucidates the potential roles of these polymers in colloidal systems with zeolites, revealing their promise for crafting organic-inorganic materials. Additional insight was also provided by careful examination of the thermal stability (TGA-DSC) of the obtained cellulose/zeolite materials. Furthermore, the study distinguishes the different adsorption mechanisms of CMC and CC, with CMC relying on some weak interactions (H-bonding and van der Waals forces), while CC interacts mainly via electrostatic forces. Both CMC and CC can act as stabilizing agents, with CMC being more efficient and using both electrosteric and depletion stabilizations. Importantly, the concentration of CC plays a role in bridging flocculation, highlighting the concentration-dependent nature of the stabilization mechanism.
Originalspråkengelska
Artikelnummer122456
TidskriftCarbohydrate Polymers
Antal sidor15
ISSN0144-8617
DOI
StatusPublicerad - 2024
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 116 Kemi

Citera det här