The quotient algebra of compact-by-approximable operators on Banach spaces failing the approximation property

Hans-Olav Tylli, Henrik Johannes Wirzenius

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

We initiate a study of structural properties of the quotient algebra K (X)/A(X) of the compact-by-approximable operators on Banach spaces X failing the approximation property. Our main results and examples include the following: (i) there is a linear isomorphic embedding from c(0) into K (Z)/A(Z), where Z belongs to the class of Banach spaces constructed by Willis that have the metric compact approximation property but fail the approximation property, (ii) there is a linear isomorphic embedding from a nonseparable space c(0)(Gamma) into K (Z(FJ))/A(Z(FJ)), where Z(FJ) is a universal compact factorisation space arising from the work of Johnson and Figiel.

Originalspråkengelska
TidskriftJournal of the Australian Mathematical Society
Volym110
Nummer2
Sidor (från-till)266-288
Antal sidor23
ISSN1446-7887
DOI
StatusPublicerad - apr. 2021
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 111 Matematik

Citera det här