Sammanfattning
The suffix tree - the compacted trie of all the suffixes of a string - is the most important and widely-used data structure in string processing. We consider a natural combinatorial question about suffix trees: for a string S of length n, how many nodes nu(S)(d) can there be at (string) depth d in its suffix tree? We prove nu(n, d) = max(S) (is an element of Sigma n) nu(S)(d) is O ((n/d) log(n/d)), and show that this bound is asymptotically tight, describing strings for which nu(S)(d) is Omega((n/d)log(n/d)). (C) 2020 Elsevier B.V. All rights reserved.
Originalspråk | engelska |
---|---|
Tidskrift | Theoretical Computer Science |
Volym | 854 |
Sidor (från-till) | 63-67 |
Antal sidor | 5 |
ISSN | 0304-3975 |
DOI | |
Status | Publicerad - 16 jan. 2021 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap