Tracking the Traces of Passivization and Negation in Contextualized Representations

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Contextualized word representations encode rich information about syntax and semantics, alongside specificities of each context of use. While contextual variation does not always reflect actual meaning shifts, it can still reduce the similarity of embeddings for word instances having the same meaning. We explore the imprint of two specific linguistic alternations, namely passivization and negation, on the representations generated by neural models trained with two different objectives: masked language modeling and translation. Our exploration methodology is inspired by an approach previously proposed for removing societal biases from word vectors. We show that passivization and negation leave their traces on the representations, and that neutralizing this information leads to more similar embeddings for words that should preserve their meaning in the transformation. We also find clear differences in how the respective features generalize across datasets.
Originalspråkengelska
Titel på värdpublikationProceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
RedaktörerAfra Alishahi, Yonatan Belinkov, Grzegorz Chrupała, Dieuwke Hupkes, Yuval Pinter, Hassan Sajjad
Antal sidor13
UtgivningsortStroudsburg
FörlagThe Association for Computational Linguistics
Utgivningsdatum20 nov. 2020
Sidor136-148
ISBN (elektroniskt)978-1-952148-86-6
DOI
StatusPublicerad - 20 nov. 2020
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangBlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP - Online event
Varaktighet: 20 nov. 202020 nov. 2020
Konferensnummer: 3

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här