Transition-Based Coding and Formal Language Theory for Ordered Digraphs

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review


Transition-based parsing of natural language uses transition systems to build directed annotation graphs (digraphs) for sentences. In this paper, we define, for an arbitrary ordered digraph, a unique decomposition and a corresponding linear encoding that are associated bijectively with each other via a new transition system. These results give us an efficient and succinct representation for digraphs and sets of digraphs. Based on the system and our analysis of its syntactic properties, we give structural bounds under which the set of encoded digraphs is restricted and becomes a context-free or a regular string language. The context-free restriction is essentially a superset of the encodings used previously to characterise properties of noncrossing digraphs and to solve maximal subgraphs problems. The regular restriction with a tight bound is shown to capture the Universal Dependencies v2.4 treebanks in linguistics.
Bidragets översatta titelJärjestettyjen verkkojen siirtymäpohjainen koodaus ja formaalien kielten teoria
Titel på värdpublikationThe 14th International Conference on Finite-State Methods and Natural Language Processing : Proceedings of the Conference
RedaktörerHeiko Vogler, Andreas Maletti
Antal sidor14
FörlagThe Association for Computational Linguistics
Utgivningsdatum23 sep. 2019
ISBN (elektroniskt)978-1-950737-96-3
StatusPublicerad - 23 sep. 2019
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Finite State Methods and Natural Language Processing - Dresden, Tyskland
Varaktighet: 23 sep. 201925 sep. 2019
Konferensnummer: 14


NamnProceedings of the International Conference on Finite-State Methods and Natural Language Processing
FörlagAssociation for Computational Linguistics

Bibliografisk information

The ISBN of the host publication can be found on the web site of the conference (


  • 113 Data- och informationsvetenskap
  • 6121 Språkvetenskaper

Citera det här