Ultralow Catalytic Loading for Optimised Electrocatalytic Performance of AuPt Nanoparticles to Produce Hydrogen and Ammonia

Leticia S. Bezerra, Paul Brasseur, Sam Sullivan-Allsop, Rongsheng Cai, Kaline N. da Silva, Shiqi Wang, Harishchandra Singh, Ashok K. Yadav, Hugo L.S. Santos, Mykhailo Chundak, Ibrahim Abdelsalam, Vilma J. Heczko, Elton Sitta, Mikko Ritala, Wenyi Huo, Thomas J.A. Slater, Sarah J. Haigh, Pedro H.C. Camargo

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

The hydrogen evolution and nitrite reduction reactions are key to producing green hydrogen and ammonia. Antenna–reactor nanoparticles hold promise to improve the performances of these transformations under visible-light excitation, by combining plasmonic and catalytic materials. However, current materials involve compromising either on the catalytic activity or the plasmonic enhancement and also lack control of reaction selectivity. Here, we demonstrate that ultralow loadings and non-uniform surface segregation of the catalytic component optimize catalytic activity and selectivity under visible-light irradiation. Taking Pt−Au as an example we find that fine-tuning the Pt content produces a 6-fold increase in the hydrogen evolution compared to commercial Pt/C as well as a 6.5-fold increase in the nitrite reduction and a 2.5-fold increase in the selectivity for producing ammonia under visible light excitation relative to dark conditions. Density functional theory suggests that the catalytic reactions are accelerated by the intimate contact between nanoscale Pt-rich and Au-rich regions at the surface, which facilitates the formation of electron-rich hot-carrier puddles associated with the Pt-based active sites. The results provide exciting opportunities to design new materials with improved photocatalytic performance for sustainable energy applications.

Originalspråkengelska
TidskriftAngewandte Chemie - International Edition
Antal sidor11
ISSN1433-7851
DOI
StatusPublicerad - 6 maj 2024
MoE-publikationstypA1 Tidskriftsartikel-refererad

Bibliografisk information

Publisher Copyright:
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Vetenskapsgrenar

  • 116 Kemi

Citera det här