Uncertainty-Aware Natural Language Inference with Stochastic Weight Averaging

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

This paper introduces Bayesian uncertainty modeling using Stochastic Weight Averaging-Gaussian (SWAG) in Natural Language Understanding (NLU) tasks. We apply the approach to standard tasks in natural language inference (NLI) and demonstrate the effectiveness of the method in terms of prediction accuracy and correlation with human annotation disagreements. We argue that the uncertainty representations in SWAG better reflect subjective interpretation and the natural variation that is also present in human language understanding. The results reveal the importance of uncertainty modeling, an often neglected aspect of neural language modeling, in NLU tasks.
Originalspråkengelska
Titel på värdpublikationProceedings of the 24th Nordic Conference on Computational Linguistics
RedaktörerTanel Alumäe , Mark Fishel
Antal sidor8
UtgivningsortTartu
FörlagUniversity of Tartu Library
Utgivningsdatum2023
Sidor358-365
ISBN (elektroniskt)978-99-1621-999-7
StatusPublicerad - 2023
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangNordic Conference on Computational Linguistics - Tórshavn, Färöarna
Varaktighet: 22 maj 202324 maj 2023
Konferensnummer: 24

Publikationsserier

NamnNEALT Proceedings Series
FörlagUniversity of Tartu Library
Nummer52
ISSN (tryckt)1736-8197
ISSN (elektroniskt)1736-6305

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här