UniBench: A Benchmark for Multi-Model Database Management Systems

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Unlike traditional database management systems which are organized around a single data model, a multi-model database (MMDB) utilizes a single, integrated back-end to support multiple data models, such as document, graph, relational, and key-value. As more and more platforms are proposed to deal with multi-model data, it becomes crucial to establish a benchmark for evaluating the performance and usability of MMDBs. Previous benchmarks, however, are inadequate for such scenario because they lack a comprehensive consideration for multiple models of data. In this paper, we present a benchmark, called UniBench, with the goal of facilitating a holistic and rigorous evaluation of MMDBs. UniBench consists of a mixed data model, a synthetic multi-model data generator, and a set of core workloads. Specifically, the data model simulates an emerging application: Social Commerce, a Web-based application combining E-commerce and social media. The data generator provides diverse data format including JSON, XML, key-value, tabular, and graph. The workloads are comprised of a set of multi-model queries and transactions, aiming to cover essential aspects of multi-model data management. We implemented all workloads on ArangoDB and OrientDB to illustrate the feasibility of our proposed benchmarking system and show the learned lessons through the evaluation of these two multi-model databases. The source code and data of this benchmark can be downloaded at http://udbms.cs.helsinki.fi/bench/.
Originalspråkengelska
Titel på värdpublikationPerformance Evaluation and Benchmarking for the Era of Artificial Intelligence : 10th TPC Technology Conference, TPCTC 2018, Rio de Janeiro, Brazil, August 27–31, 2018, Revised Selected Papers
RedaktörerRaghunath Nambiar, Meikel Poess
Antal sidor16
UtgivningsortCham
FörlagSpringer
Utgivningsdatum2019
Sidor7-23
ISBN (tryckt)978-3-030-11403-9
ISBN (elektroniskt)978-3-030-11404-6
DOI
StatusPublicerad - 2019
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangTPC Technology Conference on Performance Evaluation & Benchmarking - Rio De Janeiro, Brasilien
Varaktighet: 27 aug. 201731 aug. 2017
Konferensnummer: 10

Publikationsserier

NamnLecture Notes in Computer Science
FörlagSpringer
Volym11135
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här