Using SLISEMAP to interpret physical data

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

Manifold visualisation techniques are commonly used to visualise high-dimensional datasets in physical sciences. In this paper, we apply a recently introduced manifold visualisation method, slisemap, on datasets from physics and chemistry. slisemap combines manifold visualisation with explainable artificial intelligence. Explainable artificial intelligence investigates the decision processes of black box machine learning models and complex simulators. With slisemap, we find an embedding such that data items with similar local explanations are grouped together. Hence, slisemap gives us an overview of the different behaviours of a black box model, where the patterns in the embedding reflect a target property. In this paper, we show how slisemap can be used and evaluated on physical data and that it is helpful in finding meaningful information on classification and regression models trained on these datasets.
Originalspråkengelska
Artikelnummere0297714
TidskriftPLoS One
Volym19
Nummer1
Antal sidor16
ISSN1932-6203
DOI
StatusPublicerad - 25 jan. 2024
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här