Sammanfattning

Cities and urban green areas therein can be considered as complex social-ecological systems that provide various ecosystem services with different synergies and trade-offs among them. In this article, we show that multiple stakeholder perspectives and data sources should be used to capture key values for sustainable planning and management of urban green spaces. Using an urban forest in Helsinki, Finland as a case study, we incorporated data collected using public participation GIS, expert elicitation and forest inventories in order to investigate the guidance that the different types of data, and their integration, can provide for landscape planning. We examined the relationship and spatial concurrence between two social variables i.e. visitors’ perceived landscape values and green space use, and two ecological variables i.e. forest habitat quality and urban biodiversity, using hot/coldspot analysis. We found weak correlations and low mean spatial coincidence between the social and ecological data, indicating great complementary importance to multi-criteria decision-making. In addition, there was a higher level of spatial agreement between the ecological datasets than between the social datasets. Forest habitat quality and urban biodiversity were positively correlated and spatially coincided moderately, while we found a negative correlation and very low overlap between visitor use and landscape values. This highlights the conceptual and spatial distinction between the general preferences and values citizens assign to public green spaces and the realized everyday use of these areas and their services. The resulting maps can inform planners on overall social and environmental quality of the landscape, and point out potential threats to areas of high ecological value due to intensive recreational use, which is crucial information for natural resource management. In the end, we discuss different strategies for managing overlaps and discrepancies between the social and ecological values.
Originalspråkengelska
Artikelnummer0203611
TidskriftPLoS One
Volym13
Utgåva9
Antal sidor19
ISSN1932-6203
DOI
StatusPublicerad - 26 sep 2018
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 1172 Miljövetenskap

Citera det här