Workload-aware materialization for efficient variable elimination on Bayesian networks

Cigdem Aslay, Martino Ciaperoni, Aristides Gionis, Michael Mathioudakis

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Bayesian networks are general, well-studied probabilistic models that capture dependencies among a set of variables. Variable Elimination is a fundamental algorithm for probabilistic inference over Bayesian networks. In this paper, we propose a novel materialization method, which can lead to significant efficiency gains when processing inference queries using the Variable Elimination algorithm. In particular, we address the problem of choosing a set of intermediate results to precompute and materialize, so as to maximize the expected efficiency gain over a given query workload. For the problem we consider, we provide an optimal polynomial-time algorithm and discuss alternative methods. We validate our technique using real-world Bayesian networks. Our experimental results confirm that a modest amount of materialization can lead to significant improvements in the running time of queries, with an average gain of 70%, and reaching up to a gain of 99%, for a uniform workload of queries. Moreover, in comparison with existing junction tree methods that also rely on materialization, our approach achieves competitive efficiency during inference using significantly lighter materialization.
Originalspråkengelska
Titel på värdpublikation2021 IEEE 37th International Conference on Data Engineering (ICDE)
Antal sidor12
Utgivningsdatum19 apr. 2021
Sidor1152-1163
ISBN (tryckt)978-1-7281-9185-0
ISBN (elektroniskt)978-1-7281-9184-3
DOI
StatusPublicerad - 19 apr. 2021
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangIEEE International Conference on Data Engineering (IEEE ICDE) - Chania, Grekland
Varaktighet: 19 apr. 202122 apr. 2021
Konferensnummer: 37

Publikationsserier

NamnIEEE International Conference on Data Engineering
FörlagIEEE COMPUTER SOC
ISSN (tryckt)1084-4627

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här