Projekt per år
Sammanfattning
Bayesian networks are general, well-studied probabilistic models that capture dependencies among a set of variables. Variable Elimination is a fundamental algorithm for probabilistic inference over Bayesian networks. In this paper, we propose a novel materialization method, which can lead to significant efficiency gains when processing inference queries using the Variable Elimination algorithm. In particular, we address the problem of choosing a set of intermediate results to precompute and materialize, so as to maximize the expected efficiency gain over a given query workload. For the problem we consider, we provide an optimal polynomial-time algorithm and discuss alternative methods. We validate our technique using real-world Bayesian networks. Our experimental results confirm that a modest amount of materialization can lead to significant improvements in the running time of queries, with an average gain of 70%, and reaching up to a gain of 99%, for a uniform workload of queries. Moreover, in comparison with existing junction tree methods that also rely on materialization, our approach achieves competitive efficiency during inference using significantly lighter materialization.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | 2021 IEEE 37th International Conference on Data Engineering (ICDE) |
Antal sidor | 12 |
Utgivningsdatum | 19 apr. 2021 |
Sidor | 1152-1163 |
ISBN (tryckt) | 978-1-7281-9185-0 |
ISBN (elektroniskt) | 978-1-7281-9184-3 |
DOI | |
Status | Publicerad - 19 apr. 2021 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | IEEE International Conference on Data Engineering (IEEE ICDE) - Chania, Grekland Varaktighet: 19 apr. 2021 → 22 apr. 2021 Konferensnummer: 37 |
Publikationsserier
Namn | IEEE International Conference on Data Engineering |
---|---|
Förlag | IEEE COMPUTER SOC |
ISSN (tryckt) | 1084-4627 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
- 1 Aktiv
-
MLDB: Model Management Systems: Machine learning meets Database Systems
Gionis, A., Mahadevan, A., Maniatis, A., Merchant, A., Pai, S. G. & Mathioudakis, M.
Suomen Akatemia Projektilaskutus
01/09/2019 → 31/12/2023
Projekt: Finlands Akademi: Akademiprojektsbidrag